Abstract
AbstractFixed dose combinations (FDCs) incorporating two or three medicines in a single inhaler have been created to enhance patient compliance and hence clinical outcomes. However, the development of dry powder inhalers (DPIs), particularly for FDCs, faces challenges pertinent to formulation uniformity and reproducibility. Therefore, this project aimed to employ nanotechnology to develop a FDC of DPIs for market-leading medicines—fluticasone propionate (FP) and salmeterol xinafoate (SAL)—for asthma management. Nanoaggregates were prepared using a novel biocompatible and biodegradable poly(ester amide) based on the amino acid tyrosine, utilising a one-step interfacial polymerisation process. The produced tyrosine poly (ester amide) drug-loaded nanoparticles were evaluated for content uniformity, PSA, FTIR, TEM, DSC, XRD and aerodynamic performance (in vitro and in vivo). The optimised formulation demonstrated high entrapment efficiency– > 90%. The aerodynamic performance in terms of the emitted dose, fine particle fraction and respirable dose was superior to the carrier-based marketed product. In-vivo studies showed that FP (above the marketed formulation) and SAL reached the lungs of mice in a reproducible manner. These results highlight the superiority of novel FDC FP/SAL nanoparticles prepared via a one-step process, which can be used as a cost-effective and efficient method to alleviate the burden of asthma.
Publisher
Springer Science and Business Media LLC