Reliability constrained dynamic generation expansion planning using honey badger algorithm

Author:

Abou El Ela Adel A.,El-Sehiemy Ragab A.,Shaheen Abdullah M.,Shalaby Ayman S.,Mouafi Mohamed T.

Abstract

AbstractGeneration expansion planning (GEP) is a complex, highly constrained, non-linear, discrete and dynamic optimization task aimed at determining the optimum generation technology mix of the best expansion alternative for long-term planning horizon. This paper presents a new framework to study the GEP in a multi-stage horizon with reliability constrained. GEP problem is presented to minimize the capital investment costs, salvage value cost, operation and maintenance, and outage cost under several constraints over planning horizon. Added to that, the spinning reserve, fuel mix ratio and reliability in terms of Loss of Load Probability are maintained. Moreover, to decrease the GEP problem search space and reduce the computational time, some modifications are proposed such as the Virtual mapping procedure, penalty factor approach, and the modified of intelligent initial population generation. For solving the proposed reliability constrained GEP problem, a novel honey badger algorithm (HBA) is developed. It is a meta-heuristic search algorithm inspired from the intelligent foraging behavior of honey badger to reach its prey. In HBA, the dynamic search behavior of honey badger with digging and honey finding approaches is formulated into exploration and exploitation phases. Added to that, several modern meta-heuristic optimization algorithms are employed which are crow search algorithm, aquila optimizer, bald eagle search and particle swarm optimization. These algorithms are applied, in a comparative manner, for three test case studies for 6-year, 12-year, and 24-year of short- and long-term planning horizon having five types of candidate units. The obtained results by all these proposed algorithms are compared and validated the effectiveness and superiority of the HBA over the other applied algorithms.

Funder

Kafr El Shiekh University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3