Spike protein mutations and structural insights of pangolin lineage B.1.1.25 with implications for viral pathogenicity and ACE2 binding affinity

Author:

Akter Shahina,Oliveira Jonas Ivan Nobre,Barton Carl,Sarkar Murshed Hasan,Shahab Muhammad,Banu Tanjina Akhtar,Goswami Barna,Osman Eshrar,Uzzaman Mohammad Samir,Nafisa Tasnim,Molla Maruf Ahmed,Yeasmin Mahmuda,Farzana Maisha,Habib Ahashan,Shaikh Aftab Ali,Khan Salim

Abstract

AbstractSevere Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of COVID -19, is constantly evolving, requiring continuous genomic surveillance. In this study, we used whole-genome sequencing to investigate the genetic epidemiology of SARS-CoV-2 in Bangladesh, with particular emphasis on identifying dominant variants and associated mutations. We used high-throughput next-generation sequencing (NGS) to obtain DNA sequences from COVID-19 patient samples and compared these sequences to the Wuhan SARS-CoV-2 reference genome using the Global Initiative for Sharing All Influenza Data (GISAID). Our phylogenetic and mutational analyzes revealed that the majority (88%) of the samples belonged to the pangolin lineage B.1.1.25, whereas the remaining 11% were assigned to the parental lineage B.1.1. Two main mutations, D614G and P681R, were identified in the spike protein sequences of the samples. The D614G mutation, which is the most common, decreases S1 domain flexibility, whereas the P681R mutation may increase the severity of viral infections by increasing the binding affinity between the spike protein and the ACE2 receptor. We employed molecular modeling techniques, including protein modeling, molecular docking, and quantum mechanics/molecular mechanics (QM/MM) geometry optimization, to build and validate three-dimensional models of the S_D614G-ACE2 and S_P681R-ACE2 complexes from the predominant strains. The description of the binding mode and intermolecular contacts of the referenced systems suggests that the P681R mutation may be associated with increased viral pathogenicity in Bangladeshi patients due to enhanced electrostatic interactions between the mutant spike protein and the human ACE2 receptor, underscoring the importance of continuous genomic surveillance in the fight against COVID -19. Finally, the binding profile of the S_D614G-ACE2 and S_P681R-ACE2 complexes offer valuable insights to deeply understand the binding site characteristics that could help to develop antiviral therapeutics that inhibit protein–protein interactions between SARS-CoV-2 spike protein and human ACE2 receptor.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3