Isolation, characterization and response surface method optimization of cellulose from hybridized agricultural wastes

Author:

Rasheed Hauwa A.,Adeleke Adekunle A.,Nzerem Petrus,Olosho Adebayo I.,Ogedengbe Temitayo S.,Jesuloluwa Seun

Abstract

AbstractThis study explores the utilization of eight readily available agricultural waste varieties in Nigeria—sugarcane bagasse, corn husk, corn cob, wheat husk, melina, acacia, mahogany, and ironwood sawdust—as potential sources of cellulose. Gravimetric analysis was employed to assess the cellulose content of these wastes, following which two selected wastes were combined based on their cellulose content and abundance to serve as the raw material for the extraction process. Response Surface Methodology, including Box-Behnken design, was applied to enhance control over variables, establish an optimal starting point, and determine the most favorable reaction conditions. The cellulose extracted under various conditions was comprehensively examined for content, structure, extent of crystallinity, and morphological properties. Characterization techniques such as X-ray Diffraction, Scanning Electron Microscopy, and Fourier Transform Infrared Spectroscopy were employed for detailed analysis. Compositional analysis revealed sugarcane bagasse and corn cob to possess the highest cellulose content, at 41 ± 0.41% and 40 ± 0.32% respectively, with FTIR analysis confirming relatively low C=C bond intensity in these samples. RSM optimization indicated a potential 46% isolated yield from a hybrid composition of sugarcane bagasse and corn cob at NaOH concentration of 2%, temperature of 45 °C, and 10 ml of 38% H2O2. However, FTIR analyses revealed the persistence of non-cellulosic materials in this sample. Further analysis demonstrated that cellulose isolated at NaOH concentration of 10%, temperature of 70 °C, and 20 ml of 38% H2O2 was of high purity, with a yield of 42%. Numerical optimization within this extraction condition range predicted a yield of 45.6% at NaOH concentration of 5%, temperature of 45 °C, and 20 ml of 38% H2O2. Model validation confirmed an actual yield of 43.9% at this condition, aligning closely with the predicted value. These findings underscore the significant potential of combinning and utilizing agricultural wastes as a valuable source of cellulose, paving the way for sustainable and resource-efficient practices in various industrial applications.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3