Author:
Suzuki Chie,Han Sarina,Kesavamoorthy Gandhervin,Kosugi Mutsumi,Araki Kaori,Harada Norihiro,Kanazawa Masakatsu,Tsukada Hideo,Magata Yasuhiro,Ouchi Yasuomi
Abstract
AbstractThe positron emission tomography probes 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) and 2-tert-butyl-4-chloro-5-{6-[2-(2-[18F]fluoroethoxy)-ethoxy]-pyridin-3-ylmethoxy}-2H-pyridazin-3-one ([18F]BCPP-EF) are designed to evaluate glycolysis and oxidative phosphorylation, respectively, and are both used to estimate neuronal activity. However, previous studies have shown a discrepancy in these probes’ accumulation in the compromised region, possibly due to the presence of activated microglia acting like deleterious or neuroprotective phenotypes. Hence, we evaluated lipopolysaccharide (LPS)- and interleukin 4 (IL4)-stimulated microglial uptake of [14C]2DG and [18F]BCPP-EF to give a new insight into the hypothesis that different uptake of [18F]FDG and [18F]BCPP-EF can be ascribed to the different metabolic pathways activated during microglial activation. LPS or IL4 stimulation increased the proinflammatory or anti-inflammatory marker gene expression in microglial cells. In LPS-stimulated cells, [14C]2DG uptake and glycolysis related gene expression were elevated, and [18F]BCPP-EF uptake was reduced. In IL4-stimulated cells, [18F]BCPP-EF uptake was increased, and [14C]2DG uptake was decreased. The expression of genes involved in glycolysis and mitochondrial complex I subunits was not changed by IL4 stimulation. The uptake of [14C]2DG and [18F]BCPP-EF differs in LPS- and IL4-stimulated polarized microglial cells. The present results suggest that the in vivo accumulation of metabolic tracers [18F]FDG and [18F]BCPP-EF can be influenced by the different aspects of neuroinflammation.
Funder
Japan Agency for Medical Research and Development
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献