Gene knockdown of CCR3 reduces eosinophilic inflammation and the Th2 immune response by inhibiting the PI3K/AKT pathway in allergic rhinitis mice

Author:

Yuan Jiasheng,Liu Yuehui,Yu Juan,Dai Meina,Zhu Yu,Bao Youwei,Peng Haisen,Liu Ke,Zhu Xinhua

Abstract

AbstractThe CCR3 gene plays a critical role in allergic airway inflammation, such as allergic rhinitis (AR), and there is an inflammatory signal link between the nasal cavity and the CCR3 gene in bone marrow. However, the effects of the CCR3 gene in bone marrow cells on AR are not clear. The present study investigated the roles and underlying mechanisms of the bone marrow CCR3 gene in AR mice. Conditional knockout of the bone marrow CCR3 gene (CKO) in mice was generated using the Cre-LoxP recombination system, and offspring genotypes were identified using polymerase chain reaction (PCR). An ovalbumin-induced AR model was established in CKO and wild-type mice to measure eosinophilic inflammation and the Th2 immune response. The following mechanisms were explored using a specific PI3K/AKT pathway inhibitor (Ly294002). We successfully constructed and bred homozygous CKO mice and confirmed a significant increase in CCR3 expression and PI3K/AKT pathway activity in AR mice. Deficiency of the bone marrow CCR3 gene caused a remarkable reduction of CCR3 expression and the PI3K/AKT signaling pathway activity, inhibited histopathological lesions and eosinophil infiltration of the nasal cavity, and reduced the production of Th2 cytokines in serum, which led to the remission of allergic symptoms in AR mice. Ly294002 treatment also decreased these inflammatory indexes in a concentration-dependent manner and blocked inflammatory signals from CCR3, but it did not affect the high expression of CCR3 in AR mice. Collectively, our results suggest that conditional knockout of the bone marrow CCR3 gene can reduce eosinophilic inflammation and the Th2 immune response, which may be due to inhibition of the PI3K/AKT pathway.

Funder

Natural Science Foundation of Jiangxi Province

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3