An optimized DCO with modified binary-weighted DCTLs based hybrid tuning banks for an E-band DPLL

Author:

Tang Lu,Yu Zichuan,Lu Yujia,Jin Zhiqi,Xia Sicong,Zhang Youming,Tang Xusheng

Abstract

AbstractAn optimized millimeter-wave digital controlled oscillator (DCO) in a 40-nm CMOS process is presented in this work. The coarse-tuning modules and medium-tuning modules of the DCO utilize modified binary-weighted digitally controlled transmission lines (DCTLs) to achieve a better compromise among smaller chip size, higher resonant frequency, better tuning resolution and lower phase noise. The tuning precision and die size of the medium tuning bank are improved without changing the binary coding rules by replacing the lowest-weight bit of the DCTLs with switched capacitors. In comparison with traditional DCTLs, the control bits of the coarse and medium tuning modules have been changed from 30 to 8, resulting in a 34.4% reduction in overall length (from 122$$\upmu$$ μ m to 80$$\upmu$$ μ m). In addition, the DCO’s fine-tuning modules are achieved using a binary-weighted switched capacitors array connected to the secondary winding of a low-coupling transformer, which enhances the DCO’s fine-tuning bank for better frequency resolution with less circuit complexity. The measured tuning range of the optimized DCO is 76-81GHz with a smaller die size of 0.12mm$$^2$$ 2 . This results in an outstanding figure of merit ($$FoM_A$$ F o M A ) of − 190.52dBc/Hz.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3