In situ observation of melt pool evolution in ultrasonic vibration-assisted directed energy deposition

Author:

El-Azab Salma A.,Zhang Cheng,Jiang Sen,Vyatskikh Aleksandra L.,Valdevit Lorenzo,Lavernia Enrique J.,Schoenung Julie M.

Abstract

AbstractThe presence of defects, such as pores, in materials processed using additive manufacturing represents a challenge during the manufacturing of many engineering components. Recently, ultrasonic vibration-assisted (UV-A) directed energy deposition (DED) has been shown to reduce porosity, promote grain refinement, and enhance mechanical performance in metal components. Whereas it is evident that the formation of such microstructural features is affected by the melt pool behavior, the specific mechanisms by which ultrasonic vibration (UV) influences the melt pool remain elusive. In the present investigation, UV was applied in situ to DED of 316L stainless steel single tracks and bulk parts. For the first time, high-speed video imaging and thermal imaging were implemented in situ to quantitatively correlate the application of UV to melt pool evolution in DED. Extensive imaging data were coupled with in-depth microstructural characterization to develop a statistically robust dataset describing the observed phenomena. Our findings show that UV increases the melt pool peak temperature and dimensions, while improving the wettability of injected particles with the melt pool surface and reducing particle residence time. Near the substrate, we observe that UV results in a 92% decrease in porosity, and a 54% decrease in dendritic arm spacing. The effect of UV on the melt pool is caused by the combined mechanisms of acoustic cavitation, ultrasound absorption, and acoustic streaming. Through in situ imaging we demonstrate quantitatively that these phenomena, acting simultaneously, effectively diminish with increasing build height and size due to acoustic attenuation, consequently decreasing the positive effect of implementing UV-A DED. Thus, this research provides valuable insight into the value of in situ imaging, as well as the effects of UV on DED melt pool dynamics, the stochastic interactions between the melt pool and incoming powder particles, and the limitations of build geometry on the UV-A DED technique.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3