CSA@g-C3N4 as a novel, robust and efficient catalyst with excellent performance for the synthesis of 4H-chromenes derivatives

Author:

Hosseini Saber,Azizi Najmedin

Abstract

AbstractA pioneering robust and green heterogeneous acidic catalyst (CSA@g-C3N4) was rationally designed via immobilization of camphorsulfonic acid (CSA) on the g-C3N4 surface under mild conditions. Grafting CSA in the g-C3N4 lattice is distinguished as the root cause of facilitating the structure change of g-C3N4, leading to a unique morphology, accordingly the remarkable catalytic efficiency of CSA@g-C3N4. The morphology of new as-prepared nano-catalyst was specified by means of FT-IR, XRD, SEM, EDS, TEM, TGA, and BET. For the first time, it is exhibited that the efficient catalyst CSA@g-C3N4 can productively accomplish the three-component reactions with high yields and also serve as an inspiration for easily performing various sorts of MCRs based on our finding. The recommended synthesis pathway of chromenes derivatives is facile and cost-effective which applies a condensation reaction of salicylaldehyde, thiophenol, and malononitrile followed by ready purification in a benign manner. Moreover, the CSA@g-C3N4 nanocomposite can be promptly reused, illustrating no sensational decrease in the catalytic activity after ten times.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3