Reconstructing social mixing patterns via weighted contact matrices from online and representative surveys

Author:

Koltai Júlia,Vásárhelyi Orsolya,Röst GergelyORCID,Karsai MártonORCID

Abstract

AbstractThe unprecedented behavioural responses of societies have been evidently shaping the COVID-19 pandemic, yet it is a significant challenge to accurately monitor the continuously changing social mixing patterns in real-time. Contact matrices, usually stratified by age, summarise interaction motifs efficiently, but their collection relies on conventional representative survey techniques, which are expensive and slow to obtain. Here we report a data collection effort involving over $$2.3\%$$ 2.3 % of the Hungarian population to simultaneously record contact matrices through a longitudinal online and sequence of representative phone surveys. To correct non-representative biases characterising the online data, by using census data and the representative samples we develop a reconstruction method to provide a scalable, cheap, and flexible way to dynamically obtain closer-to-representative contact matrices. Our results demonstrate that although some conventional socio-demographic characters correlate significantly with the change of contact numbers, the strongest predictors can be collected only via surveys techniques and combined with census data for the best reconstruction performance. We demonstrate the potential of combined online-offline data collections to understand the changing behavioural responses determining the future evolution of the outbreak, and to inform epidemic models with crucial data.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3