Fast physical repetitive patterns generation for masking in time-delay reservoir computing

Author:

Argyris Apostolos,Schwind Janek,Fischer Ingo

Abstract

AbstractAlbeit the conceptual simplicity of hardware reservoir computing, the various implementation schemes that have been proposed so far still face versatile challenges. The conceptually simplest implementation uses a time delay approach, where one replaces the ensemble of nonlinear nodes with a unique nonlinear node connected to a delayed feedback loop. This simplification comes at a price in other parts of the implementation; repetitive temporal masking sequences are required to map the input information onto the diverse states of the time delay reservoir. These sequences are commonly introduced by arbitrary waveform generators which is an expensive approach when exploring ultra-fast processing speeds. Here we propose the physical generation of clock-free, sub-nanosecond repetitive patterns, with increased intra-pattern diversity and their use as masking sequences. To that end, we investigate numerically a semiconductor laser with a short optical feedback cavity, a well-studied dynamical system that provides a wide diversity of emitted signals. We focus on those operating conditions that lead to a periodic signal generation, with multiple harmonic frequency tones and sub-nanosecond limit cycle dynamics. By tuning the strength of the different frequency tones in the microwave domain, we access a variety of repetitive patterns and sample them in order to obtain the desired masking sequences. Eventually, we apply them in a time delay reservoir computing approach and test them in a nonlinear time-series prediction task. In a performance comparison with masking sequences that originate from random values, we find that only minor compromises are made while significantly reducing the instrumentation requirements of the time delay reservoir computing system.

Funder

Conselleria d’Innovació, Recerca i Turisme del Govern de les Illes Balears

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Agencia Estatal de Investigación

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3