Author:
Qu Yuanyuan,Li Xuesheng,Qin Zhiliang,Lu Qidong
Abstract
AbstractAs an effective approach to perceive environments, acoustic scene classification (ASC) has received considerable attention in the past few years. Generally, ASC is deemed a challenging task due to subtle differences between various classes of environmental sounds. In this paper, we propose a novel approach to perform accurate classification based on the aggregation of spatial–temporal features extracted from a multi-branch three-dimensional (3D) convolution neural network (CNN) model. The novelties of this paper are as follows. First, we form multiple frequency-domain representations of signals by fully utilizing expert knowledge on acoustics and discrete wavelet transformations (DWT). Secondly, we propose a novel 3D CNN architecture featuring residual connections and squeeze-and-excitation attentions (3D-SE-ResNet) to effectively capture both long-term and short-term correlations inherent in environmental sounds. Thirdly, an auxiliary supervised branch based on the chromatogram of the original signal is incorporated in the proposed architecture to alleviate overfitting risks by providing supplementary information to the model. The performance of the proposed multi-input multi-feature 3D-CNN architecture is numerically evaluated on a typical large-scale dataset in the 2019 IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events (DCASE 2019) and is shown to obtain noticeable performance gains over the state-of-the-art methods in the literature.
Publisher
Springer Science and Business Media LLC
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献