Using machine learning to predict processes and morphometric features of watershed

Author:

Mokarram Marzieh,Pourghasemi Hamid Reza,Tiefenbacher John P.

Abstract

AbstractThe research aims to classify alluvial fans’ morphometric properties using the SOM algorithm. It also determines the relationship between morphometric characteristics and erosion rate and lithology using the GMDH algorithm. For this purpose, alluvial fans of 4 watersheds in Iran are extracted semi-automatically using GIS and digital elevation model (DEM) analysis. The relationships between 25 morphometric features of these watersheds, the amount of erosion, and formation material are investigated using the self-organizing map (SOM) method. Principal component analysis (PCA), Greedy, Best first, Genetic search, Random search as feature selection algorithms are used to select the most important parameters affecting erosion and formation material. The group method of data handling (GMDH) algorithm is employed to predict erosion and formation material based on morphometries. The results indicated that the semi-automatic method in GIS could detect alluvial fans. The SOM algorithm determined that the morphometric factors affecting the formation material were fan length, minimum height of fan, and minimum fan slope. The main factors affecting erosion were fan area (Af) and minimum fan height (Hmin-f). The feature selection algorithm identified (Hmin-f), maximum fan height (Hmax-f), minimum fan slope, and fan length (Lf) to be the morphometries most important for determining formation material, and basin area, fan area, (Hmax-f) and compactness coefficient (Cirb) were the most important characteristics for determining erosion rates. The GMDH algorithm predicted the fan formation materials and rates of erosion with high accuracy (R2 = 0.94, R2 = 0.87).

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3