Abstract
AbstractBlood serum is enriched in lipids and has provided a platform to understand the pathogenesis of a number of human diseases with improved diagnosis and development of biomarkers. Understanding lipid changes in neurodegenerative diseases is particularly important because of the fact that lipids make up >50% of brain tissues. Frontotemporal dementia (FTD) is a common cause of early onset dementia, characterized by brain atrophy in the frontal and temporal regions, concomitant loss of lipids and dyslipidemia. However, little is known about the link between dyslipidemia and FTD pathophysiology. Here, we utilized an innovative approach – lipidomics based on mass spectrometry – to investigate three key aspects of FTD pathophysiology – mitochondrial dysfunction, inflammation, and oxidative stress. We analyzed the lipids that are intrinsically linked to neurodegeneration in serum collected from FTD patients and controls. We found that cardiolipin, acylcarnitine, lysophosphatidylcholine, platelet-activating factor, o-acyl-ω-hydroxy fatty acid and acrolein were specifically altered in FTD with strong correlation between the lipids, signifying pathophysiological changes in FTD. The lipid changes were verified by measurement of the common disease markers (e.g. ATP, cytokine, calcium) using conventional assays. When put together, these results support the use of lipidomics technology to detect pathophysiological changes in FTD.
Publisher
Springer Science and Business Media LLC
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献