Omicron-specific and bivalent omicron-containing vaccine candidates elicit potent virus neutralisation in the animal model

Author:

Abdoli Asghar,Jamshidi Hamidreza,Taqavian Mohammad,Baghal Mehdi Lari,Jalili Hasan

Abstract

AbstractOmicron variant (B.1.1.529) is able to escape from naturally acquired and vaccine-induced immunity, which mandates updating the current COVID-19 vaccines. Here, we investigated and compared the neutralising antibody induction of the ancestral variant-based BIV1-CovIran vaccine, the Omicron variant-based BIV1-CovIran Plus vaccine, and the novel bivalent vaccine candidate, BBIV1-CovIran, against the Omicron and ancestral Wuhan variants on the rat model. After inactivating the viral particles, the viruses were purified and formulated. Bivalent vaccines were a composition of 2.5 µg (5 µg total) or 5 µg (10 µg total) doses of each ansectral-based and Omicron-based monovalent vaccine. Subsequently, the potency of the monovalent and bivalent vaccines was investigated using the virus neutralisation test (VNT). The group that received three doses of the Omicron-specific vaccine demonstrated neutralisation activity against the Omicron variant with a geometric mean titer of 337.8. However, three doses of the Wuhan variant-specific vaccine could neutralise the Omicron variant at a maximum of 1/32 serum dilution. The neutralisation activity of the Omicron-specific vaccine, when administered as the booster dose after two doses of the Wuhan variant-specific vaccine, was 100% against the Omicron variant and the Wuhan variant at 1/64 and 1/128 serum dilution, respectively. Three doses of 5 µg bivalent vaccine could effectively neutralise both variants at the minimum of 1/128 serum dilution. The 10 µg bivalent vaccine at three doses showed even higher neutralisation titers: the geometric mean of 388 (95% CI 242.2–621.7) against Omicron and 445.7 (95% CI 303.3–655.0) against Wuhan. It is shown that the candidate bivalent and Omicron-specific vaccines could elicit a potent immune response against both Wuhan-Hu-1 and Omicron BA.1 variants.

Funder

Shifa-Pharmed Industrial Group

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference36 articles.

1. Collie, S., Champion, J., Moultrie, H., Bekker, L.-G. & Gray, G. Effectiveness of BNT162b2 vaccine against Omicron variant in South Africa. N. Engl. J. Med. 386, 494–496 (2021).

2. Tseng, H. F. et al. Effectiveness of mRNA-1273 against SARS-CoV-2 Omicron and Delta variants. Nat. Med. 28, 1063–1071 (2022).

3. Bok, K., Sitar, S., Graham, B. S. & Mascola, J. R. Accelerated COVID-19 vaccine development: Milestones, lessons, and prospects. Immunity 54, 1636–1651 (2021).

4. World Health Organization. Weekly epidemiological update on COVID-19. (2023).

5. WHO. Interim Statement on COVID-19 vaccines in the context of the circulation of the Omicron SARS-CoV-2 Variant from the WHO Technical Advisory Group on COVID-19 Vaccine Composition (TAG-CO-VAC), accessed 2 February 2022; https://www.who.int/news/item/11-01-2022-interim-statement-on-covid-19-vaccines-in-the-context-of-the-circulation-of-the-omicron-sars-cov-2-variant-from-the-who-technical-advisory-group-on-covid-19-vaccine-composition (2022)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3