Graphene oxide and its derivatives as promising In-vitro bio-imaging platforms

Author:

Esmaeili Yasaman,Bidram Elham,Zarrabi Ali,Amini Abbas,Cheng Chun

Abstract

AbstractIntrinsic fluorescence and versatile optical properties of Graphene Oxide (GO) in visible and near-infrared range introduce this nanomaterial as a promising candidate for numerous clinical applications for early-diagnose of diseases. Despite recent progresses in the impact of major features of GO on the photoluminescence properties of GO, their modifications have not yet systematically understood. Here, to study the modification effects on the fluorescence behavior, poly ethylene glycol (PEG) polymer, metal nanoparticles (Au and Fe3O4) and folic acid (FA) molecules were used to functionalize the GO surface. The fluorescence performances in different environments (water, DMEM cell media and phosphate buffer with two different pH values) were assessed through fluorescence spectroscopy and fluorescent microscopy, while Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) and Scanning electron microscopy (SEM) were utilized to evaluate the modifications of chemical structures. The modification of GO with desired molecules improved the photoluminescence property. The synthesized platforms of GO-PEG, GO-PEG-Au, GO-PEG-Fe3O4 and GO-PEG-FA illustrated emissions in three main fluorescence regions (blue, green and red), suitable for tracing and bio-imaging purposes. Considering MTT results, these platforms potentially positioned themselves as non-invasive optical sensors for the diagnosis alternatives of traditional imaging agents.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3