Author:
Wang Minhong,Tsanas Athanasios,Blin Guillaume,Robertson Dave
Abstract
AbstractThe mechanisms of pattern formation during embryonic development remain poorly understood. Embryonic stem cells in culture self-organise to form spatial patterns of gene expression upon geometrical confinement indicating that patterning is an emergent phenomenon that results from the many interactions between the cells. Here, we applied an agent-based modelling approach in order to identify plausible biological rules acting at the meso-scale within stem cell collectives that may explain spontaneous patterning. We tested different models involving differential motile behaviours with or without biases due to neighbour interactions. We introduced a new metric, termed stem cell aggregate pattern distance (SCAPD) to probabilistically assess the fitness of our models with empirical data. The best of our models improves fitness by 70% and 77% over the random models for a discoidal or an ellipsoidal stem cell confinement respectively. Collectively, our findings show that a parsimonious mechanism that involves differential motility is sufficient to explain the spontaneous patterning of the cells upon confinement. Our work also defines a region of the parameter space that is compatible with patterning. We hope that our approach will be applicable to many biological systems and will contribute towards facilitating progress by reducing the need for extensive and costly experiments.
Publisher
Springer Science and Business Media LLC
Reference39 articles.
1. Tam, P. P. L. & Loebel, D. A. F. Gene function in mouse embryogenesis: Get set for gastrulation. Nat. Rev. Genet. 8, 368–381 (2007).
2. Zhang, H. T. & Hiiragi, T. Symmetry breaking in the mammalian embryo. Annu. Rev. Cell Dev. Biol. 34, 405–426 (2018).
3. Pitaval, A., Tseng, Q., Bornens, M. & Théry, M. Cell shape and contractility regulate ciliogenesis in cell cycle-arrested cells. J. Cell Biol. 191, 303–312 (2010).
4. Blin, G. et al. Geometrical confinement controls the asymmetric patterning of Brachyury in cultures of pluripotent cells. Development 145, dev.166025 (2018).
5. Britton, G., Heemskerk, I., Hodge, R., Qutub, A. A. & Warmflash, A. A novel self-organizing embryonic stem cell system reveals signaling logic underlying the patterning of human ectoderm. Developmenet 146, dev179093 (2019).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献