miR-27b antagonizes BMP signaling in early differentiation of human induced pluripotent stem cells

Author:

Lim Jaeeun,Sakai Eiko,Sakurai Fuminori,Mizuguchi Hiroyuki

Abstract

AbstractHuman induced pluripotent stem (hiPS) cells are feasible materials for studying the biological mechanisms underlying human embryogenesis. In early embryogenesis, definitive endoderm and mesoderm are differentiated from their common precursor, mesendoderm. Bone morphogenetic protein (BMP) signaling is responsible for regulating mesendoderm and mesoderm formation. Micro RNAs (miRNAs), short non-coding RNAs, broadly regulate biological processes via post-transcriptional repression. The expression of miR-27b, which is enriched in somatic cells, has been reported to increase through definitive endoderm and hepatic differentiation, but little is known about how miR-27b acts during early differentiation. Here, we used miR-27b-inducible hiPS cells to investigate the roles of miR-27b in the undifferentiated and early-differentiated stages. In undifferentiated hiPS cells, miR-27b suppressed the expression of pluripotency markers [alkaline phosphatase (AP) and nanog homeobox (NANOG)] and cell proliferation. Once differentiation began, miR-27b expression repressed phosphorylated SMAD1/5, the mediators of the BMP signaling, throughout definitive endoderm differentiation. Consistent with the above findings, miR-27b overexpression downregulated BMP-induced mesendodermal marker genes [Brachyury, mix paired-like homeobox 1 (MIXL1) and eomesodermin (EOMES)], suggesting that miR-27b had an inhibitory effect on early differentiation. Collectively, our findings revealed a novel antagonistic role of miR-27b in the BMP signaling pathway in the early differentiation of hiPS cells.

Funder

Japan Society for the Promotion of Science

Japan Agency for Medical Research and Development

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3