LncRNA RARA-AS1 could serve as a novel prognostic biomarker in pan-cancer and promote proliferation and migration in glioblastoma

Author:

Huang Yue,Deng Song,Jiang Qiaoji,Shi Jinlong

Abstract

AbstractLong non-coding RNAs (lncRNAs) have emerged as crucial regulators of cancer progression and are potential biomarkers for diagnosis and treatment. This study investigates the role of RARA Antisense RNA 1 (RARA-AS1) in cancer and its implications for diagnosis and treatment. Various bioinformatics tools were conducted to analyze the expression patterns, immune-related functions, methylation, and gene expression correlations of RARA-AS1, mainly including the comparisons of different subgroups and correlation analyses between RARA-AS1 expression and other factors. Furthermore, we used short hairpin RNA to perform knockdown experiments, investigating the effects of RARA-AS1 on cell proliferation, invasion, and migration in glioblastoma. Our results revealed that RARA-AS1 has distinct expression patterns in different cancers and exhibits notable correlation with prognosis. Additionally, RARA-AS1 is highly correlated with certain immune checkpoints and mismatch repair genes, indicating its potential role in immune infiltration and related immunotherapy. Further analysis identified potential effective drugs for RARA-AS1 and demonstrated its potential RNA binding protein (RBP) mechanism in glioblastoma. Besides, a series of functional experiments indicated inhibiting RARA-AS1 could decrease cell proliferation, invasion, and migration of glioblastoma cell lines. Finally, RARA-AS1 could act as an independent prognostic factor for glioblastoma patients and may serve as a promising therapeutic target. All in all, Our study provides a comprehensive understanding of the functions and implications of RARA-AS1 in pan-cancer, highlighting it as a promising biomarker for survival. It is also an independent risk factor affecting prognosis in glioblastoma and an important factor affecting proliferation and migration in glioblastoma, setting the stage for further mechanistic investigations.

Funder

Jiangsu Provincial Department of Education Graduate Innovation Program

National Natural Science Foundation of China

Jiangsu Natural Science Foundation

Key Projects of Jiangsu Provincial Health Commission

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3