Author:
Zhai Fugang,He Zhiqiang,Zhao Yanfeng,Yang Liu,Kong Xiangdong
Abstract
AbstractAsynchronous coupling force of dual forging manipulator frequently results in poor forging and even equipment failure. In this paper, a synchronous control strategy in dual forging manipulator systems (DFMS) is proposed to stabilize its operation. Kinematic model of the hanging system and finite element model of the forgings are established to investigate the relationships of tension, forging deformation and deformation rate. The rigid-flexible coupling model of DFMS is further established and simulated concerning hydraulics, mechanics and controls. A correction based on the independent feedback state difference is concerned, simulated results show good agreements with experimental data, validating the dead zone compensation algorithm of the proportional valve. Moreover, by the control strategy, the vertical synchronous error of the pincers end is rather small as ± 0.125 mm. The methodology presented in this paper represents a fundamental step towards the cooperation of DFMS and the press to realize collaborative operations.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献