Potential anti-proliferative activity of Salix mucronata and Triticum spelta plant extracts on liver and colorectal cancer cell lines

Author:

Ahmad Ghada M.,Abu Serie Marwa M.,Abdel-Latif Mohamed S.,Ghoneem Tayseer,Ghareeb Doaa A.,Yacout Galila A.

Abstract

AbstractCancer’s etiology is linked to oxidative stress. As a result, it's vital to find effective natural antioxidant remedies. Salix mucronata and Triticum spelta plant extracts were prepared using five different solvents and examined for their cytotoxicity against liver HepG2 cancer cell line. It was found that Salix mucronata ethanolic extract is high in antioxidant mediated anti-cancer activity. The functional constituents (phenolic and flavonoids) as well as preparation of different ethanolic concentrations used to study their properties that include DPPH, oxygen, hydroxyl, nitrogen radical scavenging activities, ferric reducing power and metal chelating activities. The MTT assay was used to determine antioxidant-mediated anti-cancer activity against human liver (HepG2) and colorectal (Caco-2) cancer cells to calculate the half-maximal growth inhibitory concentration (IC50). Moreover, flow cytometry analysis was used to quantify the apoptotic effect on the treated cancer cells. Additionally, qRTPCR of p53, BCL2, Cyclin D, MMP9 and VEGF were measured. Furthermore, HPLC was used to assess the most effective ingredients of the plant extract. Salix mucronata 50% ethanol extract had the highest polyphenolic content, anti-oxidant, and anti-proliferative activity. Salix mucronata increased the number of total apoptotic cells, and caused an upregulation of p53 gene expression by more than five folds and a downregulation of gene expression level of BCL2, Cyclin D, MMP9 and VEGF by more than five folds. Consequently, that could modulate oxidative stress and improve the effectiveness of cancer therapy. Results, also, showed that Triticum spelta ethanolic extract was less effective than Salix mucronata. Therefore, Salix mucronata ethanolic extract represents promising surrogate natural therapy for apoptosis-mediated cancer and recommended for further investigation using animal model.

Funder

Pharos University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3