Outdoor THz fading modeling by means of gaussian and gamma mixture distributions

Author:

Papasotiriou Evangelos N.,Boulogeorgos Alexandros-Apostolos A.,Alexiou Angeliki

Abstract

AbstractTerahertz (THz) band offers a vast amount of bandwidth and is envisioned to become a key enabler for a number of next generation wireless applications. In this direction, appropriate channel models, encapsulating the large and small-scale fading phenomena, need to be developed for both indoor and outdoor communications environments. The THz large-scale fading characteristics have been extensively investigated for both indoor and outdoor scenarios. The study of indoor THz small-scale fading has recently gained the momentum, while the small-scale fading of outdoor THz wireless channels has not yet been investigated. Motivated by this, this contribution introduces Gaussian mixture (GM) distribution as a suitable small-scale fading model for outdoor THz wireless links. In more detail, multiple outdoor THz wireless measurements recorded at different transceiver separation distance are fed to an expectation-maximization fitting algorithm, which returns the parameters of the GM probability density function. The fitting accuracy of the analytical GMs is evaluated in terms of the Kolmogorov-Smirnov, Kullback-Leibler (KL) and root-mean-square-error (RMSE) tests. The results reveal that as the number of mixtures increases the resulting analytical GMs perform a better fit to the empirical distributions. In addition, the KL and RMSE metrics indicate that the increase of mixtures beyond a particular number result to no significant improvement of the fitting accuracy. Finally, following the same approach as in the case of GM, we examine the suitability of mixture Gamma to capture the small-scale fading characteristics of the outdoor THz channels.

Funder

European Commission

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Generalized Statistical Model for THz Wireless Channel with Random Atmospheric Absorption;2024 IEEE Wireless Communications and Networking Conference (WCNC);2024-04-21

2. Measurement-Based Modeling of Short Range Terahertz Channels and Their Capacity Analysis;GLOBECOM 2023 - 2023 IEEE Global Communications Conference;2023-12-04

3. When THz-NOMA Meets Holographic Reconfigurable Intelligent Surfaces;IEEE Communications Letters;2023-09

4. Performance analysis of satellite link using Gaussian mixture model under rain;International Journal of Satellite Communications and Networking;2023-07-27

5. Localization as a Key Enabler of 6G Wireless Systems: A Comprehensive Survey and an Outlook;IEEE Open Journal of the Communications Society;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3