Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms

Author:

Li Yingchang,Li Mingyang,Li Chao,Liu Zhenzhen

Abstract

AbstractForest aboveground biomass (AGB) plays an important role in the study of the carbon cycle and climate change in the global terrestrial ecosystem. AGB estimation based on remote sensing is an effective method for regional scale. In this study, Landsat 8 Operational Land Imager and Sentinel-1A data and China’s National Forest Continuous Inventory data in combination with three algorithms, either the linear regression (LR), random forest (RF), or the extreme gradient boosting (XGBoost), were used to estimate biomass of the subtropical forests in Hunan Province, China. XGBoost is a scalable tree boosting system that is widely used by data scientists and provides state-of-the-art results for many problems. It can process an entire dataset with billions of examples using a minimal amount of computational resources through the particular way of cache access patterns, data compression, and data fragmentation. The results include: (1) The combination of Landsat 8 and Sentinel-1A images as predictor variables in the XGBoost model provided the best AGB estimation. (2) In contrast to the LR method, the F-test results indicated that a significant improvement in AGB estimation was achieved with the RF and XGBoost algorithms. (3) The effect of parameter optimization was found to be more significant on XGBoost than on RF. (4) The XGBoost model is an effective method for AGB estimation and can reduce the problems of overestimation and underestimation. This research provides a new way of estimating AGB for the subtropical forest based on remote sensing through the synergy of different sensors datasets and modeling algorithms.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3