New estimate of chemical weathering rate in Xijiang River Basin based on multi-model

Author:

Zhang Yong,Yu Shi,He Shiyi,Sun Pingan,Wu Fu,Liu Zhenyu,Zhu Haiyan,Li Xiao,Zeng Peng

Abstract

AbstractHydrochemistry and Sr isotope compositions were measured in water samples collected during high- and low-water periods from the main stream and tributaries of the Xijiang River Basin in southern China. The primary weathering end-members were analyzed and calculated using the multi-model combination and classic hydrogeochemical method. During the high-water period, structural factors were found to be the main factors controlling chemical weathering in the basin, whereas anthropogenic activity and other random factors had a negligible influence. During the low-water period, both structural and random factors controlled chemical weathering. Through path-model and semi-variance analyses, we determined and quantified the relationship between the main weathering sources, whose results were stable; this is consistent with the inversion model. The total dissolved substances were mainly derived from carbonate weathering, which was approximately 76% (0–96%) while silicate weathering accounted for only 14% (5–19%). The inversion model results showed that the optimum silicate weathering rate was 7.264–35.551 × 103 mol/km2/year, where carbonic acid was the main factor that induces weathering. The CO2 flux consumed by rock weathering in the basin during the study period was 150.69 × 109 mol/year, while the CO2 flux consumed by carbonic acid weathering of carbonate (CCW) and silicate rocks (CSW) was 144.47 and 29.45 × 109 mol/year, respectively. The CO2 flux produced by H2SO4 weathered carbonate (SCW) was 23.23 × 109 mol/year.

Funder

the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3