Features derived from blood pressure and intracranial pressure predict elevated intracranial pressure events in critically ill children

Author:

Ackerman Kassi,Mohammed Akram,Chinthala Lokesh,Davis Robert L.,Kamaleswaran Rishikesan,Shafi Nadeem I.

Abstract

AbstractClinicians frequently observe hemodynamic changes preceding elevated intracranial pressure events. We employed a machine learning approach to identify novel and differentially expressed features associated with elevated intracranial pressure events in children with severe brain injuries. Statistical features from physiologic data streams were derived from non-overlapping 30-min analysis windows prior to 21 elevated intracranial pressure events; 200 records without elevated intracranial pressure events were used as controls. Ten Monte Carlo simulations with training/testing splits provided performance benchmarks for 4 machine learning approaches. XGBoost yielded the best performing predictive models. Shapley Additive Explanations analyses demonstrated that a majority of the top 20 contributing features consistently derived from blood pressure data streams up to 240 min prior to elevated intracranial events. The best performing prediction model was using the 30–60 min analysis window; for this model, the area under the receiver operating characteristic window using XGBoost was 0.82 (95% CI 0.81–0.83); the area under the precision-recall curve was 0.24 (95% CI 0.23–0.25), above the expected baseline of 0.1. We conclude that physiomarkers discernable by machine learning are concentrated within blood pressure and intracranial pressure data up to 4 h prior to elevated intracranial pressure events.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3