Active Cloaking of a Non-Uniform Scatterer

Author:

Ang Paris,Eleftheriades George V.

Abstract

AbstractAn object illuminated by an electromagnetic wave can be actively cloaked using a surface conformal array of radiating sources to cancel out scattering. This method is promising as elementary antennas can be used as sources while its active nature can surpass passivity-based performance limitations. While this technique has been conceptually extended to accommodate complex geometries, experimental validation past simple uniform scatterers is lacking. To address this scarcity, the design and experimental demonstration of a low-profile, active cloak capable of concealing a complex, metallic, polygonal target is presented. This cloak is constructed with commercially available monopoles and enclosed within a parallel-plate waveguide-based apparatus to approximate a quasi-2D environment. Performance is then assessed when the target is illuminated at either frontal or oblique incidence by a 1.2 GHz cylindrical wave. Overall, the cloak reduces the target’s scattering cross-section by an average of 7.2 dB at frontal incidence and 8.6 dB at oblique incidence. These results demonstrate the feasibility of this kind of active cloaking for more complex scatterers containing flat surfaces and edges. Further analysis shows that the cloak possesses a functional bandwidth of 14% and can be reconfigured for single frequency operation over 0.8–1.8 GHz.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Metadevice for Electromagnetic Cloaking With Monitors in Complex Space;International Journal of RF and Microwave Computer-Aided Engineering;2024-01

2. Active control of electromagnetic fields in layered media;Journal of Electromagnetic Waves and Applications;2023-11-29

3. Smart hybrid active/semi-active distributed structural acoustic control of thin- and thick-walled piezo-sandwich bimorph spherical shell cloaks;Journal of Sound and Vibration;2023-05

4. An Active Electromagnetic 3-D Surface Cloak;IEEE Transactions on Antennas and Propagation;2023-02

5. Multi-Directional Cloak Design by All-Dielectric Unit-Cell Optimized Structure;Nanomaterials;2022-11-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3