Tumor RNA transfected DCs derived from iPS cells elicit cytotoxicity against cancer cells induced from colorectal cancer patients in vitro

Author:

Maruoka Shimpei,Ojima Toshiyasu,Iwamoto Hiromitsu,Kitadani Junya,Tabata Hirotaka,Tominaga Shinta,Katsuda Masahiro,Hayata Keiji,Takeuchi Akihiro,Yamaue Hiroki

Abstract

AbstractSignificant efficacy of induced pluripotent stem cells (iPSCs) in generating DCs for cancer vaccine therapy was suggested in our previous studies. In clinical application of DC vaccine therapy, however, few DC vaccine systems have shown strong clinical response. To enhance immunogenicity in the DC vaccine, we transfected patient-derived iPSDCs with in vitro transcriptional RNA (ivtRNA), which was obtained from tumors of three patients with colorectal cancer. We investigated iPSDCs-ivtRNA which were induced by transfecting ivtRNA obtained from tumors of three colorectal cancer patients, and examined its antitumor effect. Moreover, we analyzed neoantigens expressed in colorectal cancer cells and examined whether iPSDCs-ivtRNA induced cytotoxic T lymphocytes (CTLs) against the predicted neoantigens. CTLs activated by iPSDCs-ivtRNA exhibited cytotoxic activity against the tumor spheroids in all three patients with colorectal cancer. Whole-exome sequencing revealed 1251 nonsynonymous mutations and 2155 neoantigens (IC50 < 500 nM) were predicted. For IFN-γ ELISPOT assay, these candidate neoantigens were further prioritised and 12 candidates were synthesized. IFN-γ ELISPOT assay revealed that the CTLs induced by iPSDCs-ivtRNA responded to one of the candidate neoantigens. In vitro CTLs obtained by transfecting tumor-derived RNA into iPSDCs derived from three patients with colorectal cancer showed potent tumor-specific killing effect.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3