Genotoxicity of physical silver nanoparticles, produced by the HVAD method, for Chinchilla lanigera genome

Author:

Grzesiakowska Anna,Kasprowicz Marek Jan,Kuchta-Gładysz Marta,Rymuza Katarzyna,Szeleszczuk Olga

Abstract

AbstractEach year, growing demand for silver nanoparticles (AgNP) contributes to the search for alternative methods of their production. Stable AgNP with antibacterial properties, low toxicity to the environment and living organisms are especially valued. In the study presented here, an attempt was made to assess the toxicity of two AgNP solutions produced using the HVAD method to the Chinchilla lanigera genome. The AgNO3 solution was the indicator and reference for the harmfulness of AgNP. The study was carried out in vitro on bone marrow cells isolated from Chinchilla lanigera bones. The genotoxicity was assessed by comet assay, following the treatment of cells with three silver solutions: unstable and sodium citrate-stabilized silver nanoparticles, as well as silver nitrate at three concentrations (5, 10 and 20 µg/L), after 3, 6 and 24 h. Based on the percentage of the DNA content in the comet tail and the tail moment, an increase in cell DNA integrity disruption was demonstrated in all tested variants: of solution, exposure time and concentration, compared to the control sample. A statistically significant correlation was determined between the level of induced DNA breaks and the concentration of the active solutions and the duration of their activity. A solution of silver nanoparticles stabilized with sodium citrate was shown to have the most harmful effect on bone marrow cells. Silver nitrate demonstrated a level of toxicity similar to these particles. Further studies are necessary to directly compare the genotoxic properties of AgNP produced using the HVAD method and the chemical method under the same conditions.

Funder

Ministry of Science and Higher Education of the Republic of Poland

Subvention of the Department of Animals Reproduction, Anatomy and Genomics of the University of Agriculture in Kraków

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3