Author:
Kumari P. Ashwini,Basha C. H. Hussaian,Puppala Rajendhar,Fathima Fini,Dhanamjayulu C.,Chinthaginjala Ravikumar,Mohammad Faruq,Khan Baseem
Abstract
AbstractSolar Photovoltaic (SPV) technology advancements are primarily aimed at decarbonizing and enhancing the resiliency of the energy grid. Incorporating SPV is one of the ways to achieve the goal of energy efficiency. Because of the nonlinearity, modeling of SPV is a very difficult process. Identification of variables in a lumped electric circuit model is required for accurate modeling of the SPV system. This paper presents a new state-of-the-art control technique based on human artefacts dubbed Drone Squadron Optimization for estimating 15 parameters of a three-diode equivalent model solar PV system. The suggested method simulates a nonlinear relationship between the P–V and I–V performance curves, lowering the difference between experimental and calculated data. To evaluate the adaptive performance in every climatic state, two different test cases with commercial PV cells, RTC France and photo watt-201, are used. The proposed method provides a more accurate parameter estimate. To validate the recommended approach's performance, the data are compared to the results of the most recent and powerful methodologies in the literature. For the RTC and PWP Photo Watt Cell, the DSO technique has the lowest Root Mean Square Error (RMSE) of 6.7776 × 10–4 and 0.002310324 × 10–4, respectively.
Publisher
Springer Science and Business Media LLC
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献