An ultra-thin double-functional metasurface patch antenna for UHF RFID applications

Author:

Koohestani Mohsen,Ghaneizadeh Alireza

Abstract

AbstractAn ultra-thin double-functional metasurface patch antenna (MPA) was proposed, where it can operate not only in the antenna mode but also can simultaneously act as perfect absorber for normal incident waves, suitable for RFID applications in the 868 MHz band. The MPA structure consists of a typical coaxially-fed patch antenna merged, for the first time, with a metasurface absorber acting as artificial ground. A methodology for the unit-cell design of the metasurface is proposed followed by an equivalent circuit model analysis, which makes it possible to transform a low-loss ($$tan\delta =0.0015$$ t a n δ = 0.0015 ) unit-cell with highly-reflective characteristics to a perfect absorber for normal incident waves. It is based on modifying the critical external coupling by properly introducing slits on the unit-cell, allowing to design an ultra-thin ($$\lambda _0/225$$ λ 0 / 225 at 868 MHz) and a very compact structure in comparison to previously developed designs. For validation purposes, the MPA was fabricated and its performances in both functional modes were characterized numerically and experimentally. It is demonstrated that merging the absorber with the patch not only allows obtaining a well-matched ($$|S_{11}|<-30$$ | S 11 | < - 30  dB) antenna with an enhanced gain (by 175.6% compared to a typical patch) at the desired frequency but also leads to an overall thickness of only 2.5 mm ($$\lambda _0/138.1$$ λ 0 / 138.1 at 868 MHz). With an absorber size limited to the MPA dimensions, a reasonable 1.3 dB reduction in powers reflected by the MPA was achieved compared to a similar size metallic sheet. Whilst having the lowest profile among the so far reported RFID readers, the proposed MPA can be conveniently fitted for example within the required volume of smart shelf RFID readers or used in portable RFID readers while being capable of mitigating multipath reflection issues and incorrect reading of RFID.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3