Thermal neuromodulation using pulsed and continuous infrared illumination in a penicillin-induced acute epilepsy model

Author:

Ismaiel Ebrahim,Fiáth Richárd,Szabó Ágnes,Horváth Ágoston Csaba,Fekete ZoltánORCID

Abstract

AbstractInfrared neuromodulation (INM) is a promising neuromodulation tool that utilizes pulsed or continuous-wave near-infrared (NIR) laser light to produce an elevation of the background temperature of the neural tissue. The INM-based cortical heating has been proven as an effective modality to induce changes in neuronal activities. In this paper, we investigate the effect of INM-based cortical heating on the characteristics of interictal epileptiform discharges (IEDs) induced by penicillin in anesthetized rats. Cortical heating was conducted using a NIR laser light guided through a needle-like silicon-based waveguide probe. We detected penicillin-induced cortical IEDs from preprocessed micro-electrocorticography ($$\mu$$ μ ECoG) recordings, then we assessed changes in various temporal and spectral features of IEDs due to INM. Our findings show that the fast cortical heating phase obtained with continuous-wave NIR light is highly associated with a reduction of IED amplitudes, small but significant changes in the negative amplitude of IEDs compared with the baseline, and a proportional increase in the power of frequency bands related to delta/theta (2–8 Hz) and gamma (28–80 Hz) oscillations. Furthermore, a low rate of cortical heating with pulsed NIR illumination has a more inhibitory impact on the sharp negative polarity of IEDs. Our findings do not indicate a clear reduction in the frequency of IEDs in anesthetized rodents. In contrast, 2–4 min of continuous laser illumination leads to a notable increase in IED frequency. This effect of INM could potentially restrict its use in therapeutic applications related to epilepsy. However, the thermal effect of INM on cortical neurons induces changes in other characteristics of IEDs, which could prove beneficial for future applications.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3