A facile novel synthesis of AgCuO2 delafossite nanoparticles and evaluation of their antimicrobial activity

Author:

Ateia Ebtesam E.,Arman M. M.,Mohamed Amira T.

Abstract

AbstractBi-functional nano-oxides are of growing interest to address environmental issues. In the present study, the structural and magnetic data are presented together with the antimicrobial activities (AMA). For the first time, silver delafossite oxide (AgCuO2) is successfully fabricated using a simple, low-cost technique to target antibiotic photodegradation and inactivation of model waterborne pathogens. It is prepared with an equimolar initial Ag+:Cu+ concentration ratio. The structure, morphology, and magnetic properties are studied by different characterization techniques. The size and shape of AgCuO2 NPs, in addition to their structural polytypes of 2H (hexagonal) or 3R (rhombohedral), are dependent on the preparation conditions. The existence of Cu, Ag, and O in the synthesized delafossite AgCuO2 NPs with no evidence of any impurity is ratified by the XPS spectrum. AFM measurements are taken to characterize the surface morphologies of AgCuO2. The distributed spiks are evaluated by roughness kurtosis (Rku). The roughness kurtosis has a value of 2.65 (< 3), indicating that the prepared sample is classified as bumpy. The prepared sample has 13.0, 10.0, 14.0, and 14.0 mm Inhibition Zone Diameter (IZD) antimicrobial activity against gram-positive Bacillus subtilis (B. subtilis), Bacillus cereus (B. cereus), Enterococcus faecalis (E. faecalis), and Staphylococcus aureus (S. aureus), respectively. The IZD for gram-negative Escherichia coli (E. coli), Neisseria Gonorrhoeae (N. Gonorrhoeae), Pseudomonas aeruginosa (P. aeruginosa), and Salmonella typhimrium (S. typhimrium) were found to be 12.0, 13.0, 14.0, and 13.0 mm, respectively. Therefore, the AgCuO2 NPs reveal excellent antimicrobial efficiency, and they can be effortlessly separated using a tiny magnet or a simple magnetic separator. The adequate cytotoxicity and magnetic characteristics of the antimicrobial sample suggest a promising future for it in biomedical applications.

Funder

Cairo University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3