Interpretation of surficial shear crack propagation mechanisms in bending for Zn or AlSi coated hot press forming steels

Author:

Kim Selim,Jo Min Cheol,Kim Seongwoo,Oh Jinkeun,Kim Sang-Heon,Sohn Seok Su,Lee Sunghak

Abstract

AbstractThe bending angle at the peak load is regarded as the most important parameter for evaluating bending properties of hot-press-forming (HPF) steels. However, it is not a mechanics-based parameter for the bending criterion, and the data interpretation is difficult because bending criteria in relation with microstructures and associated bending mechanisms have not been verified yet. In this study, effects of coating and baking treatments on bending angles at the peak load of three kinds of 1470 MPa-grade HPF steels were investigated by interrupted three-point bending tests coupled with direct microstructural observation. According to direct observations of sequential cracking processes of V-shaped crack (V-crack), bending procedures were classified into four stages: (1) formation of small V-crack, (2) increase in number and size of V-cracks, (3) initiation of shear-crack propagation from the V-crack tip, and (4) further propagation and opening of the shear crack. The minimum bending angle required for initiating the shear-crack propagation from the V-crack tip was defined as a critical angle, which meant the boundary between the 2nd and 3rd stages. The present bending behavior related with critical bending angle and V-cracking could be interpreted similarly by the fracture-mechanics concept, i.e., the initiation of shear-crack propagation.

Funder

Brain Korea 21 PLUS Project for Center for Creative Industrial Materials

POSCO

Korea University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3