Structural integrity assessment of Inconel 617/P92 steel dissimilar welds for different groove geometry

Author:

Kumar Amit,Pandey Chandan

Abstract

AbstractThe work is focused on examining the effect of the weld groove geometry on microstructure, mechanical behaviour, residual stresses and distortion of Alloy 617/P92 steel dissimilar metal weld (DMW) joints. Manual multi-pass tungsten inert gas welding with ERNiCrCoMo-1 filler was employed to fabricate the DMW for two different groove designs: Narrow V groove (NVG) and Double V groove (NVG). The microstructural examination suggested a heterogeneous microstructure evolution at the interface of the P92 steel and ERNiCrCoMo-1 weld, including the macrosegregation and element diffusion near the interface. The interface structure included the beach parallel to the fusion boundary at the P92 steel side, the peninsula connected to the fusion boundary and the island within the weld metal and partially melted zone along Alloy 617 fusion boundary. An uneven distribution of beach, peninsula and island structures along the fusion boundary of P92 steel was confirmed from optical and SEM images of interfaces. The major diffusion of the Fe from P92 steel to ERNiCrCoMo-1 weld and Cr, Co, Mo, and Ni from ERNiCrCoMo-1 weld to P92 steel were witnessed from SEM/EDS and EMPA map. The Mo-rich M6C and Cr-rich M23C6 phases were detected in inter-dendritic areas of the weld metal using the weld’s SEM/EDS, XRD and EPMA study, which formed due to the rejection of Mo from the core to inter-dendritic locations during solidification. The other phases detected in the ERNiCrCoMo-1 weld were Ni3(Al, Ti), Ti(C, N), Cr7C3 and Mo2C. A variation in the microstructure of weld metal from top to root and also along the transverse direction in terms of composition and dendritic structure and also due to the composition gradient between dendrite core and inter-dendritic areas, a significant variation in hardness of weld metal was observed from both top to root and also in the transverse direction. The peak hardness was measured in CGHAZ of P92 while the minimum was in ICHAZ of P92 steel. Tensile test studies of both NVG and DVG welds joint demonstrated that failure occurred at P92 steel in both, room-temperature and high-temperature tensile tests and ensured the welded joint’s applicability for advanced ultra-supercritical applications. However, the strength of the welded joint for both types of joints was measured as lower than the strength of the base metals. In Charpy impact testing of NVG and DVG welded joints, specimens failed in two parts with a small amount of plastic deformation and impact energy of 99 ± 4 J for the NVG welds joint and 91 ± 3 J for the DVG welded joint. The welded joint met the criteria for boiler applications in terms of impact energy (minimum 42 J as per European Standard EN ISO15614-1:2017 and 80 J as per fast breeder reactor application). In terms of microstructural and mechanical properties, both welded joints are acceptable. However, the DVG welded joint showed minimum distortion and residual stresses compared to the NVG welded joint.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3