A numerical analysis of inclination and rectification of ramp-bridge piers adjacent to surcharge load in soft clay area

Author:

Shen Boheng,Mao Dingtao,Ding Yong,Wang Lei,Li Zhiyong

Abstract

AbstractThe surrounding surcharge has an adverse impact on the service performance of buildings and bridges, and it can endanger their structural safety, especially in soft soil areas. As one case study, the inclination accident of an expressway ramp bridge and its rectification are investigated in this study. Through the three-dimensional (3D) finite element (FE) analysis of the overall structures composed of the bridge span, the pier, and the pile foundation, the whole process of the inclination by the adjacent dumped earth, partial recovery by the unloading, and the lateral pushing rectification of the bridge structure were simulated. The results show that the surcharge load leads to soil displacement near the bridge pile, and the pile-soil interaction leads to the pile deformation, which further causes the inclination of the pier, and the movement of the bridge span. The severity of the accident can be measured by the inclination of the piers and the opening widths of the bridge expansion joints. Due to the plastic deformation and drainage consolidation of the soft clay foundation under the surcharge load, the inclination of the piles and piers cannot be fully recovered after unloading. In order to capture these processes, the FE simulation was divided into three steps. First, the drainage consolidation of the soil foundation were identified by FE simulation and the field measurement of the recovery of the structure after unloading. Second, the effects of soil properties, the surcharge time and surcharge strength on the bridge inclination and the recovery capacity after unloading are discussed. Finally, the rectification of the bridge by lateral pushing was simulated, and the deformation and stress in the pier and pile were calculated to evaluate the safety of the structures. These analyses provided understanding towards the prevention of the bridge inclination under surcharge load, prediction of the recovery by the unloading, and the methods to reduce the residual deformation to meet the specifications.

Funder

Ningbo Transportation Science and Technology Project

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3