Understanding non-stationarity of hydroclimatic extremes and resilience in Peninsular catchments, India

Author:

Kumar Nikhil,Patel Piyush,Singh Shivam,Goyal Manish Kumar

Abstract

AbstractClimate change significantly impacts the global hydrological cycle, leading to pronounced shifts in hydroclimatic extremes such as increased duration, occurrence, and intensity. Despite these significant changes, our understanding of hydroclimatic risks and hydrological resilience remains limited, particularly at the catchment scale in peninsular India. This study aims to address this gap by examining hydroclimatic extremes and resilience in 54 peninsular catchments from 1988 to 2011. We initially assess extreme precipitation and discharge indices and estimate design return levels using non-stationary Generalized Extreme Value (GEV) models that use global climate modes (ENSO, IOD, and AMO) as covariates. Further, hydrological resilience is evaluated using a convex model that inputs simulated discharge from the best hydrological model among SVM, RVM, random forest, and a conceptual model (abcd). Our analysis shows that the spatial patterns of mean extreme precipitation indices (R1 and R5) mostly resemble with extreme discharge indices (Q1 and Q5). Additionally, all extreme indices, including R1, Q1, R5, and Q5, demonstrate non-stationary behavior, indicating the substantial influence of global climate modes on extreme precipitation and flooding across the catchments. Our results indicate that the random forest model outperforms the others. Furthermore, we find that 68.52% of the catchments exhibit low to moderate hydrological resilience. Our findings emphasize the importance of understanding hydroclimatic risks and catchment resilience for accurate climate change impact predictions and effective adaptation strategies.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3