Multi-hazard spatial modeling via ensembles of machine learning and meta-heuristic techniques

Author:

Bordbar Mojgan,Aghamohammadi Hossein,Pourghasemi Hamid Reza,Azizi Zahra

Abstract

AbstractConsidering the large number of natural disasters on the planet, many areas in the world are at risk of these hazards; therefore, providing an integrated map as a guide map for multiple natural hazards can be applied to save human lives and reduce financial losses. This study designed a multi-hazard map for three important hazards (earthquakes, floods, and landslides) to identify endangered areas in Kermanshah province located in western Iran using ensemble SWARA-ANFIS-PSO and SWARA-ANFIS-GWO models. In the first step, flood and landslide inventory maps were generated to identify at-risk areas. Then, the occurrence places for each hazard were divided into two groups for training susceptibility models (70%) and testing the models applied (30%). Factors affecting these hazards, including altitude, slope aspect, slope degree, plan curvature, distance to rivers, distance to roads, distance to the faults, rainfall, lithology, and land use, were used to generate susceptibility maps. The SWARA method was used to weigh the subclasses of the influencing factors in floods and landslides. In addition, a peak ground acceleration (PGA) map was generated to investigate earthquakes in the study area. In the next step, the ANFIS machine learning algorithm was used in combination with PSO and GWO meta-heuristic algorithms to train the data, and SWARA-ANFIS-PSO and SWARA-ANFIS-GWO susceptibility maps were separately generated for flood and landslide hazards. The predictive ability of the implemented models was validated using the receiver operating characteristics (ROC), root mean square error (RMSE), and mean square error (MSE) methods. The results showed that the SWARA-ANFIS-PSO ensemble model had the best performance in generating flood susceptibility maps with ROC = 0.936, RMS = 0.346, and MSE = 0.120. Furthermore, this model showed excellent results (ROC = 0.894, RMS = 0.410, and MSE = 0.168) for generating a landslide map. Finally, the best maps and PGA map were combined, and a multi-hazard map (MHM) was obtained for Kermanshah Province. This map can be used by managers and planners as a practical guide for sustainable development.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3