Research on steel surface defect classification method based on deep learning

Author:

Gao Yang,Lv Gang,Xiao Dong,Han Xize,Sun Tao,Li Zhenni

Abstract

AbstractSurface defects on steel, arising from factors like steel composition and manufacturing techniques, pose significant challenges to industrial production. Efficient and precise detection of these defects is crucial for enhancing production efficiency and product quality. In accordance with these requisites, this paper elects to undertake the detection task predicated on the you only look once (YOLO) algorithm. In this study, we propose a novel approach for surface flaw identification based on the YOLOv5 algorithm, called YOLOv5-KBS. This method integrates attention mechanism and weighted Bidirectional Feature Pyramid Network (BiFPN) into YOLOv5 architecture. Our method addresses issues of background interference and defect size variability in images. Experimental results show that the YOLOv5-KBS model achieves a notable 4.2% increase in mean Average Precision (mAP) and reaches a detection speed of 70 Frames Per Second (FPS), outperforming the baseline model. These findings underscore the effectiveness and potential applications of our proposed method in industrial settings.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3