Author:
Torrado Héctor,Carreras Carlos,Raventos Núria,Macpherson Enrique,Pascual Marta
Abstract
AbstractConnectivity and local adaptation are two contrasting evolutionary forces highly influencing population structure. To evaluate the impact of early-life traits and environmental conditions on genetic structuring and adaptation, we studied two sympatric fish species in the Western Mediterranean Sea: Symphodus tinca and S. ocellatus. We followed an individual-based approach and measured early-life history traits from otolith readings, gathered information on environmental variables and obtained genome-wide markers from genotyping-by-sequencing (GBS). The two species presented contrasting population structure across the same geographic gradient, with high and significant population differentiation in S. ocellatus, mostly determined by oceanographic fronts, and low differentiation and no front effect in S. tinca. Despite their different levels of genetic differentiation, we identified in both species candidate regions for local adaptation by combining outlier analysis with environmental and phenotypic association analyses. Most candidate loci were associated to temperature and productivity in S. ocellatus and to temperature and turbulence in S. tinca suggesting that different drivers may determine genomic diversity and differentiation in each species. Globally, our study highlights that individual-based approach combining genomic, environmental and phenotypic information is key to identify signals of selection and the processes mediating them.
Publisher
Springer Science and Business Media LLC
Reference77 articles.
1. Grummer, J. A. et al. Aquatic landscape genomics and environmental effects on genetic variation. Trends Ecol. Evol. 34, 641–654 (2019).
2. Ahrens, C. W. et al. The search for loci under selection: trends, biases and progress. Mol. Ecol. 27, 1342–1356 (2018).
3. Benestan, L. et al. Seascape genomics provides evidence for thermal adaptation and current-mediated population structure in American lobster (Homarus americanus). Mol. Ecol. 25, 5073–5092 (2016).
4. Xuereb, A., Kimber, C. M., Curtis, J. M. R., Bernatchez, L. & Fortin, M. J. Putatively adaptive genetic variation in the giant California sea cucumber (Parastichopus californicus) as revealed by environmental association analysis of restriction-site associated DNA sequencing data. Mol. Ecol. 27, 5035–5048 (2018).
5. Hasan, M. M. et al. Sticklebacks adapted to divergent osmotic environments show differences in plasticity for kidney morphology and candidate gene expression. J. Exp. Biol. 220, 2175–2186 (2017).
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献