Performance evaluation of a new sponge-based moving bed biofilm reactor for the removal of pharmaceutical pollutants from real wastewater

Author:

Chalipa Zohreh,Hosseinzadeh MajidORCID,Nikoo Mohammad Reza

Abstract

AbstractPharmaceutical pollutants, a group of emerging contaminants, have attracted outstanding attention in recent years, and their removal from aquatic environments has been addressed. In the current study, a new sponge-based moving bed biofilm reactor (MBBR) was developed to remove chemical oxygen demand (COD) and the pharmaceutical compound Ibuprofen (IBU). A 30-L pilot scale MBBR was constructed, which was continuously fed from the effluent of the first clarifier of the Southern Tehran wastewater treatment plant. The controlled operational parameters were pH in the natural range, Dissolved Oxygen of 1.5–2 mg/L, average suspended mixed liquor suspended solids (MLSS), and mixed liquor volatile suspended solids (MLVSS) of 1.68 ± 0.1 g/L and 1.48 ± 0.1 g/L, respectively. The effect of hydraulic retention time (HRT) (5 h, 10 h, 15 h), filling ratio (10%, 20%, 30%), and initial IBU concentration (2 mg/L, 5 mg/L, 10 mg/L) on removal efficiencies was assessed. The findings of this study revealed a COD removal efficiency ranging from 48.9 to 96.7%, with the best removal efficiency observed at an HRT of 10 h, a filling ratio of 20%, and an initial IBU concentration of 2 mg/L. Simultaneously, the IBU removal rate ranged from 25 to 92.7%, with the highest removal efficiency observed under the same HRT and filling ratio, albeit with an initial IBU concentration of 5 mg/L. An extension of HRT from 5 to 10 h significantly improved both COD and IBU removal. However, further extension from 10 to 15 h slightly enhanced the removal efficiency of COD and IBU, and even in some cases, removal efficiency decreased. Based on the obtained results, 20% of the filling ratio was chosen as the optimum state. Increasing the initial concentration of IBU from 2 to 5 mg/L generally improved COD and IBU removal, whereas an increase from 5 to 10 mg/L caused a decline in COD and IBU removal. This study also optimized the reactor’s efficiency for COD and IBU removal by using response surface methodology (RSM) with independent variables of HRT, filling ratio, and initial IBU concentration. In this regard, the quadratic model was found to be significant. Utilizing the central composite design (CCD), the optimal operating parameters at an HRT of 10 h, a filling ratio of 21%, and an initial IBU concentration of 3 mg/L were pinpointed, achieving the highest COD and IBU removal efficiencies. The present study demonstrated that sponge-based MBBR stands out as a promising technology for COD and IBU removal.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3