Slow waves on long helices

Author:

Barr Lauren E.,Ward Gareth P.,Hibbins Alastair P.,Hendry Euan,Sambles J. Roy

Abstract

AbstractSlowing light in a non-dispersive and controllable fashion opens the door to many new phenomena in photonics. As such, many schemes have been put forward to decrease the velocity of light, most of which are limited in bandwidth or incur high losses. In this paper we show that a long metallic helix supports a low-loss, broadband slow wave with a mode index that can be controlled via geometrical design. For one particular geometry, we characterise the dispersion of the mode, finding a relatively constant mode index of $$\sim$$ 45 between 10 and 30 GHz. We compare our experimental results to both a geometrical model and full numerical simulation to quantify and understand the limitations in bandwidth. We find that the bandwidth of the region of linear dispersion is associated with the degree of hybridisation between the fields of a helical mode that travels around the helical wire and an axial mode that disperses along the light line. Finally, we discuss approaches to broaden the frequency range of near-constant mode index: we find that placing a straight wire along the axis of the helix suppresses the interaction between the axial and high index modes supported by the helix, leading to both an increase in bandwidth and a more linear dispersion.

Funder

EPSRC Centre for Doctoral Training in Metamaterials

EPSRC and QinetiQ Ltd. via the TEAM-A Prosperity Partnership

EPSRC Fellowship

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3