Author:
Liang Mao-Chang,Laskar Amzad H.,Barkan Eugeni,Newman Sally,Thiemens Mark H.,Rangarajan Ravi
Abstract
AbstractRepresentations of the changing global carbon cycle under climatic and environmental perturbations require highly detailed accounting of all atmosphere and biosphere exchange. These fluxes remain unsatisfactory, as a consequence of only having data with limited spatiotemporal coverage and precision, which restrict accurate assessments. Through the nature of intimate coupling of global carbon and oxygen cycles via O2 and CO2 and their unique triple oxygen isotope compositions in the biosphere and atmosphere, greater insight is available. We report analysis of their isotopic compositions with the widest geographical and temporal coverage (123 new measurements for CO2) and constrain, on an annual basis, the global CO2 recycling time (1.5 ± 0.2 year) and gross primary productivities of terrestrial (~ 170–200 PgC/year) and oceanic (~ 90–120 PgC/year) biospheres. Observed inter-annual variations in CO2 triple oxygen isotopic compositions were observed at a magnitude close to the largest contrast set by the terrestrial and oceanic biospheres. The seasonal cycles between the east and west Pacific Ocean were found to be drastically different. This intra-annual variability implies that the entire atmospheric CO2 turnover time is not much longer than the tropospheric mixing time (less than ~ 5 months), verifying the derived recycling time. The new measurements, analyses, and incorporation of other global data sets allow development of an independent approach, providing a strong constraint to biogeochemical models.
Funder
Ministry of Science and Technology, Taiwan
Academia Sinica
Publisher
Springer Science and Business Media LLC
Reference52 articles.
1. IPCC. Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change (Cambridge University Press, 2014).
2. Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 1–10 (2018).
3. IPCC. Climate Change 2021: The Physical Science Basis: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2021).
4. Graven, H. et al. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341, 1085–1089. https://doi.org/10.1126/science.1239207 (2013).
5. Campbell, J. et al. Large historical growth in global terrestrial gross primary production. Nature 544, 84. https://doi.org/10.1038/nature22030 (2017).
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献