Abstract
AbstractFor teleoperation tasks requiring high control accuracy, it is essential to provide teleoperators with information on the interaction between the end effector and the remote environment. Real-time imaging devices have been widely adopted, but it delivers limited information, especially when the end effectors approach the target following the line-of-sight. In such situations, teleoperators rely on the perspective at the screen and can apply high force unintentionally at the initial contact. This research proposes to deliver the distance information at teleoperation to the fingertips of teleoperators, i.e., proximity sensation. Transcutaneous electrical stimulation was applied onto the fingertips of teleoperators, with the pulsing frequency inversely proportional to the distance. The efficacy of the proximity sensation was evaluated by the initial contact force during telerobotic pinch in three sensory conditions: vision only, vision + visual assistance (distance on the screen), and vision + proximity sensation. The experiments were repeated at two viewing angles: 30–60° and line-of-sight, for eleven healthy human subjects. For both cases, the initial contact force could be significantly reduced by either visual assistance (20–30%) or the proximity sensation (60–70%), without additional processing time. The proximity sensation is two-to-three times more effective than visual assistance regarding the amount of force reduction.
Publisher
Springer Science and Business Media LLC
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献