Machine learning-powered estimation of malachite green photocatalytic degradation with NML-BiFeO3 composites

Author:

Salahshoori Iman,Yazdanbakhsh Amirhosein,Baghban Alireza

Abstract

AbstractThis study explores the potential of photocatalytic degradation using novel NML-BiFeO3 (noble metal-incorporated bismuth ferrite) compounds for eliminating malachite green (MG) dye from wastewater. The effectiveness of various Gaussian process regression (GPR) models in predicting MG degradation is investigated. Four GPR models (Matern, Exponential, Squared Exponential, and Rational Quadratic) were employed to analyze a dataset of 1200 observations encompassing various experimental conditions. The models have considered ten input variables, including catalyst properties, solution characteristics, and operational parameters. The Exponential kernel-based GPR model achieved the best performance, with a near-perfect R2 value of 1.0, indicating exceptional accuracy in predicting MG degradation. Sensitivity analysis revealed process time as the most critical factor influencing MG degradation, followed by pore volume, catalyst loading, light intensity, catalyst type, pH, anion type, surface area, and humic acid concentration. This highlights the complex interplay between these factors in the degradation process. The reliability of the models was confirmed by outlier detection using William’s plot, demonstrating a minimal number of outliers (66–71 data points depending on the model). This indicates the robustness of the data utilized for model development. This study suggests that NML-BiFeO3 composites hold promise for wastewater treatment and that GPR models, particularly Matern-GPR, offer a powerful tool for predicting MG degradation. Identifying fundamental catalyst properties can expedite the application of NML-BiFeO3, leading to optimized wastewater treatment processes. Overall, this study provides valuable insights into using NML-BiFeO3 compounds and machine learning for efficient MG removal from wastewater.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3