Enhancement of the mechanical properties in ultra-low weight SWCNT sandwiched PDMS composites using a novel stacked architecture

Author:

Ananthasubramanian Pavithra,Sahay Rahul,Raghavan Nagarajan

Abstract

AbstractThis study focuses on enhancing the mechanical properties of thin, soft, free-standing films via a layer-by-layer (LBL) fabrication process called LBL-FP. Soft polymer nanocomposite (PNC) thin films, combining polydimethylsiloxane (PDMS) and single-walled carbon nanotubes (SWCNT) at ultra-low loadings using a unique bottom-up LBL-FP, are examined. Two different structures of layered composites, (i) LBL PNCs- Layered composites with alternating layers of PDMS and SWCNT, (ii) Bulk PNCs- Layered composites with SWCNT dispersed in the bulk of PDMS, are comparatively investigated for their structural and mechanical properties. Silane-functionalized SWCNT strengthens the chemical bonding with PDMS, improving adhesion and dispersion. Mechanical analysis using nanoindentation, delamination, and dynamic analysis highlights the advantages of LBL PNCs with alternating layers of PDMS and SWCNT. Notably, LBL PNC (0.5 wt%) exhibits significant improvements, such as 2.6X increased nanoindentation resistance, 3X improved viscoelasticity, and (2–5)X enhanced tensile properties in comparison with neat PDMS. Due to this, LBL PNCs offer potential for soft, lightweight applications like wearables, electromagnetic interference shielding materials, and strain sensors while advancing composite thin film mechanics. The study emphasizes using a stacked architecture to produce PDMS-SWCNT multilayered PNCs with improved mechanics utilizing ultra-low concentrations of SWCNT. This first-of-its-kind stack design facilitates possibilities for lightweight composites utilizing less fillers. The LBL assembly involves the stacking of alternating layers of different materials, each contributing specific properties to enhance the overall strength and toughness of the structure.

Funder

Ministry of Education - Singapore

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3