A novel type of biochar from chitinous Hermetia illucens waste with a built-in stimulating effect on plants and soil arthropods

Author:

Bulak Piotr,Proc-Pietrycha Kinga,Kaczor Monika,Złotko Katarzyna,Polakowski Cezary,Wiącek Dariusz,Waniak-Nowicka Hanna,Zięba Emil,Waśko Adam,Oleszczuk Patryk,Bieganowski Andrzej

Abstract

AbstractThe breeding of insects generates waste in the form of insect excrement and feed residues. In addition, a specific chitinous waste in the form of insect larvae and pupae exuvia is also left. Recent research tries to manage it, e.g., by producing chitin and chitosan, which are value-added products. The circular economy approach requires testing new, non-standard management methods that can develop products with unique properties. To date, the possibility of biochar production from chitinous waste derived from insects has not been evaluated. Here we show that the puparia of Hermetia illucens are suitable for biochar production, which in turn exhibits original characteristics. We found that the biochars have a high nitrogen level, which is rarely achievable in materials of natural origin without artificial doping. This study presents a detailed chemical and physical characterization of the biochars. Moreover, ecotoxicological analysis has revealed the biochars’ stimulation effect on plant root growth and the reproduction of the soil invertebrate Folsomia candida, as well as the lack of a toxic effect on its mortality. This predisposes these novel materials with already built-in stimulating properties to be used in agronomy, for example as a carriers for fertilizers or beneficial bacteria.

Funder

Poland National Science Centre

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference59 articles.

1. Dossey, A. T., Tatum, J. T. & McGill, W. L. Modern insect-based food industry: Current status, insect processing technology, and recommendations moving forward. Insects Sustain. Food Ingred. Prod. Process. Food Appl. https://doi.org/10.1016/B978-0-12-802856-8.00005-3 (2016).

2. Commission Regulation (EU) 2017/893. Of 24 May 2017—amending Annexes I and IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council and Annexes X, XIV and XV to Commission Regulation (EU) No 142/2011 as regards the provision. Off. J. Eur. Union 60, 92–116 (2017).

3. Commission Implementing Regulation (EU) 2021/1975. 12 November 2021 authorising the placing on the market of frozen, dried and powder forms of Locusta migratoria as a novel food under regulation (EU) 2015/2283 of the European Parliament and of the Counc. Off. J. Eur. Union 1975, 10–16 (2021).

4. Commission Implementing Regulation (EU) 2022, 169. 8 February 2022 authorising the placing on the market of frozen, dried and powder forms of yellow mealworm (Tenebrio molitor larva) as a novel food under regulation (EU) 2015/2283 of the European Parliam. Off. J. Eur. Union 2016, 48–119 (2022).

5. Müller, A., Wolf, D. & Gutzeit, H. O. The black soldier fly, Hermetia illucens: A promising source for sustainable production of proteins, lipids and bioactive substances. Zeitschrift fur Naturforsch—Sect. C J. Biosci. 72, 351–363 (2017).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3