Cortical midfrontal theta dynamics following foot strike may index response adaptation during reactive stepping

Author:

Stokkermans Mitchel,Staring Wouter,Cohen Michael X.,Solis-Escalante Teodoro,Weerdesteyn Vivian

Abstract

AbstractReactive balance recovery often requires stepping responses to regain postural stability following a sudden change in posture. The monitoring of postural stability has been linked to neuroelectrical markers such as the N1 potential and midfrontal theta frequency dynamics. Here, we investigated the role of cortical midfrontal theta dynamics during balance monitoring following foot landing of a reactive stepping response to recover from whole-body balance perturbations. We hypothesized that midfrontal theta dynamics reflect the engagement of a behavioral monitoring system, and therefore that theta would increase time-locked to the moment of foot strike after a stepping response, coinciding with a re-assessment of postural balance to determine if an additional step is necessary. We recorded high-density EEG and kinematic data of 15 healthy young participants while they stood on a platform that delivered multi-directional balance perturbations. Participants were instructed to recover balance with a single step utilizing either their left or right leg (in separate blocks). We used targeted spatial filtering (generalized eigen decomposition) in combination with time–frequency analysis of the EEG data to investigate whether theta dynamics increase following foot strike event. In line with our hypothesis, the results indicate that the foot strike event elicits a midfrontal theta power increase, though only for backward stepping. Counter to our expectations, however, this theta power increase was positively correlated with the margin of stability at foot strike, suggesting a different role of foot strike related theta from monitoring stability. Post-hoc analysis suggests that midfrontal theta dynamics following foot landing may instead facilitate adaptation of stability margins at subsequent stepping responses. We speculate that increase of theta power following foot strikes was not related to stability monitoring but instead may indicate cortical dynamics related to performance monitoring of the balance response.

Funder

Radboud Universitair Medisch Centrum

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

ERC-stG

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3