Fabrication of untreated and silane-treated carboxylated cellulose nanocrystals and their reinforcement in natural rubber biocomposites

Author:

Lorwanishpaisarn Narubeth,Sae-Oui Pongdhorn,Amnuaypanich Sittipong,Siriwong Chomsri

Abstract

AbstractIn this study, cellulose nanocrystal (CNC) was extracted from Napier grass stems and subsequently functionalized to carboxylated cellulose nanocrystal (XCNC) by using an environmentally friendly method, namely, the KMnO4/oxalic acid redox reaction. The XCNC was subsequently modified with triethoxyvinylsilane (TEVS), called VCNC, by using ultrasound irradiation. The characterization of the prepared XCNC and VCNC was performed. The needle-like shape of XCNC was observed with an average diameter and length of 11.5 and 156 nm, respectively. XCNC had a carboxyl content of about 1.21 mmol g−1. The silane treatment showed no significant effects on the diameter and length of XCNC. When incorporated into natural rubber (NR), both XCNC and VCNC showed very high reinforcement, as evidenced by the substantial increases in modulus and hardness of the biocomposites, even at very low filler loadings. However, due to the high polarity of XCNC, tensile strength was not significantly improved with increasing XCNC loading up to 2 phr, above which it decreased rapidly due to the filler agglomeration. For VCNC, the silane treatment reduced hydrophilicity and improved compatibility with NR. The highly reactive vinyl group on the VCNC’s surface also takes part in sulfur vulcanization, leading to the strong covalent linkages between rubber and VCNC. Consequently, VCNC showed better reinforcement than XCNC, as evidenced by the markedly higher tensile strength and modulus, when compared at an equal filler loading. This study demonstrates the achievement in the preparation of a highly reinforcing bio-filler (VCNC) for NR from Napier grass using an environmentally friendly method and followed by a quick and simple sonochemical method.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3