Environmental effects on brain functional networks in a juvenile twin population

Author:

Tassi EmmaORCID,Maggioni EleonoraORCID,Mauri MaddalenaORCID,Fagnani CorradoORCID,Agarwal NiveditaORCID,Bianchi Anna MariaORCID,Stazi Maria A.ORCID,Nobile MariaORCID,Brambilla PaoloORCID

Abstract

AbstractThe brain’s intrinsic organization into large-scale functional networks, the resting state networks (RSN), shows complex inter-individual variability, consolidated during development. Nevertheless, the role of gene and environment on developmental brain functional connectivity (FC) remains largely unknown. Twin design represents an optimal platform to shed light on these effects acting on RSN characteristics. In this study, we applied statistical twin methods to resting-state functional magnetic resonance imaging (rs-fMRI) scans from 50 young twin pairs (aged 10–30 years) to preliminarily explore developmental determinants of brain FC. Multi-scale FC features were extracted and tested for applicability of classical ACE and ADE twin designs. Epistatic genetic effects were also assessed. In our sample, genetic and environmental effects on the brain functional connections largely varied between brain regions and FC features, showing good consistency at multiple spatial scales. Although we found selective contributions of common environment on temporo-occipital connections and of genetics on frontotemporal connections, the unique environment showed a predominant effect on FC link- and node-level features. Despite the lack of accurate genetic modeling, our preliminary results showed complex relationships between genes, environment, and functional brain connections during development. A predominant role of the unique environment on multi-scale RSN characteristics was suggested, which needs replications on independent samples. Future investigations should especially focus on nonadditive genetic effects, which remain largely unexplored.

Funder

Italian Ministry of Health

BIAL Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3