Self-agglomerated collagen patterns govern cell behaviour

Author:

Dede Eren Aysegul,Eren E. Deniz,Wilting Twan J. S.,de Boer Jan,Gelderblom Hanneke,Foolen Jasper

Abstract

AbstractReciprocity between cells and their surrounding extracellular matrix is one of the main drivers for cellular function and, in turn, matrix maintenance and remodelling. Unravelling how cells respond to their environment is key in understanding mechanisms of health and disease. In all these examples, matrix anisotropy is an important element, since it can alter the cell shape and fate. In this work, the objective is to develop and exploit easy-to-produce platforms that can be used to study the cellular response to natural proteins assembled into diverse topographical cues. We demonstrate a robust and simple approach to form collagen substrates with different topographies by evaporating droplets of a collagen solution. Upon evaporation of the collagen solution, a stain of collagen is left behind, composed of three regions with a distinct pattern: an isotropic region, a concentric ring pattern, and a radially oriented region. The formation and size of these regions can be controlled by the evaporation rate of the droplet and initial collagen concentration. The patterns form topographical cues inducing a pattern-specific cell (tenocyte) morphology, density, and proliferation. Rapid and cost-effective production of different self-agglomerated collagen topographies and their interfaces enables further study of the cell shape-phenotype relationship in vitro. Substrate topography and in analogy tissue architecture remains a cue that can and will be used to steer and understand cell function in vitro, which in turn can be applied in vivo, e.g. in optimizing tissue engineering applications.

Funder

H2020 Marie Skłodowska-Curie Actions

NWO Veni Grant

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3